A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients

نویسندگان

  • Serge Nicaise
  • Juliette Venel
چکیده

We perform the a posteriori error analysis of residual type of a transmission problem with sign changing coefficients. According to [6] if the contrast is large enough, the continuous problem can be transformed into a coercive one. We further show that a similar property holds for the discrete problem for any regular meshes, extending the framework from [6]. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...

متن کامل

A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS

In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011